1. investiga todo lo relacionado con la rueda
R/ La rueda es una pieza mecánica circular que gira alrededor de un eje Puede ser considerada una máquina simple, y forma parte del conjunto denominado elementos de máquinas.
Es uno de los inventos fundamentales en la Historia de la humanidad o el símbolo de rueda (actualmente uno de los inventos más importantes), por su gran utilidad en la elaboración de alfarería, y también en el transporte terrestre, como componente fundamental de máquinas. El conocimiento de su origen se pierde en el tiempo, pues nadie sabe quién la invento1 y sus múltiples usos han sido esenciales en el desarrollo del progreso humano: sumarios, chinos, etc.

Importancia de la Rueda
La rueda fue uno de los inventos más significativos y trascendentes llevados a cabo durante la existencia del hombre. Hoy en día puede parecer casi insignificante un desarrollo de esta categoría, pero las cosas deben ponerse en contexto; así, la rueda es un emergente de una humanidad que todavía estaba en pañales y en donde solo primitivamente comienzan a manifestarse las luces de la inteligencia. Este elemento permitió llevar a cabo una gran cantidad de actividades, como por ejemplo transportar cosas o moler trigo. Hoy en día, por supuesto, este dispositivo extiende sus funciones a un número mucho más extenso de aplicaciones, pero los principios básicos de su uso ya estaban presentes en la antigüedad más remota.
Quizá la ideación de una rueda se haya llevado a cabo mediante la observación del rodamiento que adquiere un tronco. En efecto, al ser cilíndrico, el mismo podía desplazarse por el terreno y a la vez podía servir como para poner cosas encima y trasladarlas. Con posterioridad se buscó refinar esta observación mediante la confección de un elemento artificial que cumplirá de mejor manera con este fenómeno observado. En esta circunstancia podría observarse la capacidad de abstracción incipiente en la humanidad, que de la observación de un fenómeno natural puede tomar sus principios y aplicarlos de forma tal que satisfagan sus necesidades.
Como hemos esbozado, la simpleza del invento quizá sea un tanto decepcionante si la vemos con ojos modernos. No obstante, considerando el hecho de que fue llevada a cabo en tiempos antiguos, puede decirse que significó un gran avance para la época. En efecto, los testimonios encontrados que dan cuenta de este elemento se retrotraen a miles de años antes de Cristo, pero quizá el mismo haya existido mucho antes, cosa harto probable. Esta circunstancia es visible tanto en Occidente como en Oriente. Estudiar este fenómeno puede tener un gran interés desde el punto de vista económico, porque podría dar cuenta de saltos significativos en la productividad de una sociedad determinada.
Hoy en día, la utilidad de la rueda es visible en un número increíble de aplicaciones y artefactos. En efecto, un número inmenso de tipos de máquinas requieren de ruedas para su funcionamiento, sin contar por supuesto a los distintos medios de transporte que utilizamos cotidianamente. Las mismas hoy se construyen de los más diversos materiales, diferenciándose en este sentido de las antiguas, que solo podían emplear elementos tales como madera y piedra.
Siguiente - Importancia >>
RELACIONADO
Agua para las Plantas
Programación (informática)
Energía Mecánica
La rueda fue uno de los inventos más significativos y trascendentes llevados a cabo durante la existencia del hombre. Hoy en día puede parecer casi insignificante un desarrollo de esta categoría, pero las cosas deben ponerse en contexto; así, la rueda es un emergente de una humanidad que todavía estaba en pañales y en donde solo primitivamente comienzan a manifestarse las luces de la inteligencia. Este elemento permitió llevar a cabo una gran cantidad de actividades, como por ejemplo transportar cosas o moler trigo. Hoy en día, por supuesto, este dispositivo extiende sus funciones a un número mucho más extenso de aplicaciones, pero los principios básicos de su uso ya estaban presentes en la antigüedad más remota.
Quizá la ideación de una rueda se haya llevado a cabo mediante la observación del rodamiento que adquiere un tronco. En efecto, al ser cilíndrico, el mismo podía desplazarse por el terreno y a la vez podía servir como para poner cosas encima y trasladarlas. Con posterioridad se buscó refinar esta observación mediante la confección de un elemento artificial que cumplirá de mejor manera con este fenómeno observado. En esta circunstancia podría observarse la capacidad de abstracción incipiente en la humanidad, que de la observación de un fenómeno natural puede tomar sus principios y aplicarlos de forma tal que satisfagan sus necesidades.
Como hemos esbozado, la simpleza del invento quizá sea un tanto decepcionante si la vemos con ojos modernos. No obstante, considerando el hecho de que fue llevada a cabo en tiempos antiguos, puede decirse que significó un gran avance para la época. En efecto, los testimonios encontrados que dan cuenta de este elemento se retrotraen a miles de años antes de Cristo, pero quizá el mismo haya existido mucho antes, cosa harto probable. Esta circunstancia es visible tanto en Occidente como en Oriente. Estudiar este fenómeno puede tener un gran interés desde el punto de vista económico, porque podría dar cuenta de saltos significativos en la productividad de una sociedad determinada.
Hoy en día, la utilidad de la rueda es visible en un número increíble de aplicaciones y artefactos. En efecto, un número inmenso de tipos de máquinas requieren de ruedas para su funcionamiento, sin contar por supuesto a los distintos medios de transporte que utilizamos cotidianamente. Las mismas hoy se construyen de los más diversos materiales, diferenciándose en este sentido de las antiguas, que solo podían emplear elementos tales como madera y piedra.
Siguiente - Importancia >>
RELACIONADO
Agua para las Plantas
Programación (informática)
Energía Mecánica


2. consulta que es un engranaje y que función cumple
R/ Se denomina engranaje al mecanismo utilizado para transmitir potencia mecánica de un componente a otro.1 Los engranajes están formados por dos ruedas dentadas,2 de las cuales la mayor se denomina corona y la menor piñón.3 Un engranaje sirve para transmitir movimiento circularmediante el contacto de ruedas dentadas.
Una de las aplicaciones más importantes de los engranajes es la transmisión del movimiento desde el eje de una fuente de energía, como puede ser un motor de combustión interna o un motor eléctrico, hasta otro eje situado a cierta distancia y que ha de realizar un trabajo. De manera que una de las ruedas está conectada por la fuente de energía y es conocida como rueda motriz y la otra está conectada al eje que debe recibir el movimiento del eje motor y que se denomina rueda conducida.4 Si el sistema está compuesto de más de un par de ruedas dentadas, se denomina tren.
La principal ventaja que tienen las transmisiones por engranaje respecto de la transmisión por poleas es que no patinan como las poleas, con lo que se obtiene exactitud en la relación de transmisión.
Historia[editar]
Desde épocas muy lejanas se han utilizado cuerdas y elementos fabricados en madera para solucionar los problemas de transporte, impulsión, elevación y movimiento. Nadie sabe a ciencia cierta dónde ni cuándo se inventaron los engranajes. La literatura de la antigua China, Grecia, Turquía y Damasco mencionan engranajes pero no aportan muchos detalles de los mismos.
El mecanismo de engranajes más antiguo de cuyos restos disponemos es el mecanismo de Anticitera.5 Se trata de una calculadora astronómica datada entre el 150 y el 100 a. C. y compuesta por al menos 30 engranajes de bronce con dientes triangulares. Presenta características tecnológicas avanzadas como por ejemplo trenes de engranajes epicicloidales que, hasta el descubrimiento de este mecanismo, se creían inventados en el siglo XIX. Por citas de Cicerónse sabe que el de Anticitera no fue un ejemplo aislado sino que existieron al menos otros dos mecanismos similares en esa época, construidos por Arquímedes y por Posidonio. Por otro lado, a Arquímedes se le suele considerar uno de los inventores de los engranajes porque diseñó un tornillo sin fin.
En China también se han conservado ejemplos muy antiguos de máquinas con engranajes. Un ejemplo es el llamado "carro que apunta hacia el Sur" (120-250 d. C.), un ingenioso mecanismo que mantenía el brazo de una figura humana apuntando siempre hacia el Sur gracias al uso de engranajes diferenciales epicicloidales. Algo anteriores, de en torno a 50 d. C., son los engranajes helicoidales tallados en madera y hallados en una tumba real en la ciudad china de Shensi.5
No está claro cómo se transmitió la tecnología de los engranajes en los siglos siguientes. Es posible que el conocimiento de la época del mecanismo de Anticitera sobreviviese y contribuyese al florecimiento de la ciencia y la tecnología en el mundo islámico de los siglos IX al XIII. Por ejemplo, un manuscrito andalusí del siglo XI menciona por vez primera el uso en relojes mecánicos tanto de engranajes epicíclicos como de engranajes segmentados.6 Los trabajos islámicos sobre astronomía y mecánica pueden haber sido la base que permitió que volvieran a fabricarse calculadoras astronómicas en la Edad Moderna. En los inicios del Renacimiento esta tecnología se utilizó en Europa para el desarrollo de sofisticados relojes, en la mayoría de los casos destinados a edificios públicos como catedrales.7
Leonardo da Vinci, muerto en Francia en 1519, dejó numerosos dibujos y esquemas de algunos de los mecanismos utilizados hoy diariamente, incluido varios tipos de engranajes de tipo helicoidal.
Los primeros datos que existen sobre la transmisión de rotación con velocidad angular uniforme por medio de engranajes, corresponden al año 1674, cuando el famoso astrónomo danés Olaf Roemer (1644-1710) propuso la forma o perfil del diente en epicicloide.
Robert Willis (1800-1875), considerado uno de los primeros ingenieros mecánicos, fue el que obtuvo la primera aplicación práctica de la epicicloide al emplearla en la construcción de una serie de engranajes intercambiables. De la misma manera, de los primeros matemáticos fue la idea del empleo de la evolvente de círculo en el perfil del diente, pero también se deben a Willis las realizaciones prácticas. A Willis se le debe la creación del odontógrafo, aparato que sirve para el trazado simplificado del perfil del diente de evolvente.
Es muy posible que fuera el francés Phillipe de Lahire el primero en concebir el diente de perfil en evolvente en 1695, muy poco tiempo después de que Roemer concibiera el epicicloidal.
La primera aplicación práctica del diente en evolvente fue debida al suizo Leonhard Euler (1707). En 1856, Christian Schiele descubrió el sistema de fresado de engranajes rectos por medio de la fresa madre, pero el procedimiento no se llevaría a la práctica hasta 1887, a base de la patente Grant.8
En 1874, el norteamericano William Gleason inventó la primera fresadora de engranajes cónicos y gracias a la acción de sus hijos, especialmente su hija Kate Gleason (1865-1933), convirtió a su empresa Gleason Works, radicada en Rochester (Nueva York, EEUU) en una de los fabricantes de máquinas herramientas más importantes del mundo.
En 1897, el inventor alemán Robert Hermann Pfauter (1854-1914), inventó y patentó una máquina universal de dentar engranajes rectos y helicoidales por fresa madre. A raíz de este invento y otras muchos inventos y aplicaciones que realizó sobre el mecanizado de engranajes, fundó la empresa Pfauter Company que, con el paso del tiempo, se ha convertido en una multinacional fabricante de todo tipo de máquinas-herramientas.
En 1906, el ingeniero y empresario alemán Friedrich Wilhelm Lorenz (1842-1924) se especializó en crear maquinaria y equipos de mecanizado de engranajes y en 1906 fabricó una talladora de engranajes capaz de mecanizar los dientes de una rueda de 6 m de diámetro, módulo 100 y una longitud del dentado de 1,5 m.
A finales del siglo XIX, coincidiendo con la época dorada del desarrollo de los engranajes, el inventor y fundador de la empresa Fellows Gear Shaper Company, Edwin R. Fellows (1846-1945), inventó un método revolucionario para mecanizar tornillos sin fin glóbicos tales como los que se montaban en las cajas de dirección de los vehículos antes de que fuesen hidráulicas.
En 1905, M. Chambon, de Lyon (Francia), fue el creador de la máquina para el dentado de engranajes cónicos por procedimiento de fresa madre. Aproximadamente por esas fechas André Citroën inventó los engranajes helicoidales dobles.
3. TIPOS DE ENGRANAJE
1 INTRODUCCIÓN
Engranaje, rueda o cilindro dentado empleado para transmitir un movimiento giratorio o alternativo desde una parte de una máquina a otra. Un conjunto de dos o más engranajes que transmite el movimiento de un eje a otro se denomina tren de engranajes. Los engranajes se utilizan sobre todo para transmitir movimiento giratorio, pero usando engranajes apropiados y piezas dentadas planas pueden transformar movimiento alternativo en giratorio y viceversa.
2 ENGRANAJES SIMPLES
El engranaje más sencillo es el engranaje recto, una rueda con dientes paralelos al eje tallados en su perímetro. Los engranajes rectos transmiten movimiento giratorio entre dos ejes paralelos. En un engranaje sencillo, el eje impulsado gira en sentido opuesto al eje impulsor. Si se desea que ambos ejes giren en el mismo sentido se introduce una rueda dentada denominada 'rueda loca' entre el engranaje impulsor o motor y el impulsado. La rueda loca gira en sentido opuesto al eje impulsor, por lo que mueve al engranaje impulsado en el mismo sentido que éste. En cualquier sistema de engranajes, la velocidad del eje impulsado depende del número de dientes de cada engranaje. Un engranaje con 10 dientes movido por un engranaje con 20 dientes girará dos veces más rápido que el engranaje impulsor, mientras que un engranaje de 20 dientes impulsado por uno de 10 se moverá la mitad de rápido. Empleando un tren de varios engranajes puede variarse la relación de velocidades dentro de unos límites muy amplios.
Los engranajes interiores o anulares son variaciones del engranaje recto en los que los dientes están tallados en la parte interior de un anillo o de una rueda con reborde, en vez de en el exterior. Los engranajes interiores suelen ser impulsados por un piñón, un engranaje pequeño con pocos dientes. La cremallera (barra dentada plana que avanza en línea recta) funciona como una rueda dentada de radio infinito y puede emplearse para transformar el giro de un piñón en movimiento alternativo, o viceversa.
Los engranajes cónicos, así llamados por su forma, tienen dientes rectos y se emplean para transmitir movimiento giratorio entre ejes no paralelos.

3 ENGRANAJES HELICOIDALES
Los dientes de estos engranajes no son paralelos al eje de la rueda dentada, sino que se enroscan en torno al eje en forma de hélice. Estos engranajes son apropiados para grandes cargas porque los dientes engranan formando un ángulo agudo, en lugar de 90º como en un engranaje recto. Los engranajes helicoidales sencillos tienen la desventaja de producir una fuerza que tiende a mover las ruedas dentadas a lo largo de sus ejes. Esta fuerza puede evitarse empleando engranajes helicoidales dobles, o bihelicoidales, con dientes en forma de V compuestos de medio diente helicoidal dextrorso y medio diente helicoidal levógiro. Los engranajes hipoides son engranajes cónicos helicoidales utilizados cuando los ejes son perpendiculares pero no están en un mismo plano. Una de las aplicaciones más corrientes del engranaje hipoide es para conectar el árbol de la transmisión con las ruedas en los automóviles de tracción trasera. A veces se denominan de forma incorrecta engranajes en espiral los engranajes helicoidales empleados para transmitir rotación entre ejes no paralelos.
Otra variación del engranaje helicoidal es el engranaje de husillo, también llamado tornillo sin fin. En este sistema, un tornillo sin fin largo y estrecho dotado de uno o más dientes helicoidales continuos engrana con una rueda dentada helicoidal. La diferencia entre un engranaje de husillo y un engranaje helicoidal es que los dientes del primero se deslizan a lo largo de los dientes del engranaje impulsado en lugar de ejercer una presión de rodadura directa. Los engranajes de husillo se utilizan para transmitir rotación (con una gran reducción de velocidad) entre dos ejes perpendiculares.
Engranaje, rueda o cilindro dentado empleado para transmitir un movimiento giratorio o alternativo desde una parte de una máquina a otra. Un conjunto de dos o más engranajes que transmite el movimiento de un eje a otro se denomina tren de engranajes. Los engranajes se utilizan sobre todo para transmitir movimiento giratorio, pero usando engranajes apropiados y piezas dentadas planas pueden transformar movimiento alternativo en giratorio y viceversa.
2 ENGRANAJES SIMPLES
El engranaje más sencillo es el engranaje recto, una rueda con dientes paralelos al eje tallados en su perímetro. Los engranajes rectos transmiten movimiento giratorio entre dos ejes paralelos. En un engranaje sencillo, el eje impulsado gira en sentido opuesto al eje impulsor. Si se desea que ambos ejes giren en el mismo sentido se introduce una rueda dentada denominada 'rueda loca' entre el engranaje impulsor o motor y el impulsado. La rueda loca gira en sentido opuesto al eje impulsor, por lo que mueve al engranaje impulsado en el mismo sentido que éste. En cualquier sistema de engranajes, la velocidad del eje impulsado depende del número de dientes de cada engranaje. Un engranaje con 10 dientes movido por un engranaje con 20 dientes girará dos veces más rápido que el engranaje impulsor, mientras que un engranaje de 20 dientes impulsado por uno de 10 se moverá la mitad de rápido. Empleando un tren de varios engranajes puede variarse la relación de velocidades dentro de unos límites muy amplios.
Los engranajes interiores o anulares son variaciones del engranaje recto en los que los dientes están tallados en la parte interior de un anillo o de una rueda con reborde, en vez de en el exterior. Los engranajes interiores suelen ser impulsados por un piñón, un engranaje pequeño con pocos dientes. La cremallera (barra dentada plana que avanza en línea recta) funciona como una rueda dentada de radio infinito y puede emplearse para transformar el giro de un piñón en movimiento alternativo, o viceversa.
Los engranajes cónicos, así llamados por su forma, tienen dientes rectos y se emplean para transmitir movimiento giratorio entre ejes no paralelos.

3 ENGRANAJES HELICOIDALES
Los dientes de estos engranajes no son paralelos al eje de la rueda dentada, sino que se enroscan en torno al eje en forma de hélice. Estos engranajes son apropiados para grandes cargas porque los dientes engranan formando un ángulo agudo, en lugar de 90º como en un engranaje recto. Los engranajes helicoidales sencillos tienen la desventaja de producir una fuerza que tiende a mover las ruedas dentadas a lo largo de sus ejes. Esta fuerza puede evitarse empleando engranajes helicoidales dobles, o bihelicoidales, con dientes en forma de V compuestos de medio diente helicoidal dextrorso y medio diente helicoidal levógiro. Los engranajes hipoides son engranajes cónicos helicoidales utilizados cuando los ejes son perpendiculares pero no están en un mismo plano. Una de las aplicaciones más corrientes del engranaje hipoide es para conectar el árbol de la transmisión con las ruedas en los automóviles de tracción trasera. A veces se denominan de forma incorrecta engranajes en espiral los engranajes helicoidales empleados para transmitir rotación entre ejes no paralelos.
Otra variación del engranaje helicoidal es el engranaje de husillo, también llamado tornillo sin fin. En este sistema, un tornillo sin fin largo y estrecho dotado de uno o más dientes helicoidales continuos engrana con una rueda dentada helicoidal. La diferencia entre un engranaje de husillo y un engranaje helicoidal es que los dientes del primero se deslizan a lo largo de los dientes del engranaje impulsado en lugar de ejercer una presión de rodadura directa. Los engranajes de husillo se utilizan para transmitir rotación (con una gran reducción de velocidad) entre dos ejes perpendiculares.


4 . que es una polea, identifica las partes por medio de una gráfica
Fuente:https://www.tiposde.org/ciencias-exactas/438-tipos-de-poleas/#ixzz5UfGiWrJ5
Una polea es una máquina simple, un dispositivo mecánico de tracción, que sirve para transmitir una fuerza. Consiste en una rueda con un canal en su periferia, por el cual pasa una cuerda y que gira sobre un eje central. Además, formando conjuntos —aparejos o polipastos— sirve para reducir la magnitud de la fuerza necesaria para mover un peso.
Según la definición de Hatón de la Goupillière, «la polea es el punto de apoyo de una cuerda que moviéndose se arrolla sobre ella sin dar una vuelta completa»1 actuando en uno de sus extremos la resistencia y en otro la potencia.
Historia[editar]
La única nota histórica sobre su uso se debe a Plutarco, quien en su obra Vidas paralelas (c. 100 a. C.) relata que Arquímedes, en carta al rey Hierón de Siracusa, a quien le unía gran amistad, afirmó que con una fuerza dada podía mover cualquier peso e incluso se jactó de que si existiera otra Tierra, yendo a ella podría mover ésta. Hierón, asombrado, solicitó a Arquímedes que realizara una demostración.
Acordaron que el objeto a mover fuera un barco de la armada del rey, ya que Hierón creía que este no podría sacarse de la dársena y llevarse a dique seco sin el empleo de un gran esfuerzo y numerosos hombres. Según relata Plutarco, tras cargar el barco con muchos pasajeros y con las bodegas repletas, Arquímedes se sentó a cierta distancia y tirando de la cuerda alzó sin gran esfuerzo el barco, sacándolo del agua tan derecho y estable como si aún permaneciera en el mar.2
Partes de la polea[editar]
Está compuesta por tres partes:
- La llanta: Es la zona exterior de la polea y su constitución es esencial, ya que se adaptará a la forma de la correa que alberga.
- El cuerpo: Las poleas estarán formadas por una pieza maciza cuando sean de pequeño tamaño. Cuando sus dimensiones aumentan, irán provistas de nervios y/o brazos que generen la polea, uniendo el cubo con la llanta.
- El cubo: Es el agujero cónico y cilíndrico que sirve para acoplar al eje. En la actualidad se emplean mucho los acoplamientos cónicos en las poleas, ya que resulta muy cómodo su montaje y los resultados de funcionamiento son excelentes.
5. INVESTIGA LOS TIPOS DE POLEA, RELACIONA UN DIBUJO POR CADA TIPO
Tipos de poleas
El término polea designa a una máquina utilizada para la transmisión de fuerza.
Consiste en una rueda surcada en el borde, donde se coloca una soga, y se emplea con el objetivo de cambiar el sentido de la fuerza o disminuirla considerablemente.
Las poleas se pueden clasificar de la siguiente manera:
POLEAS SIMPLES: esta clase de poleas se utiliza para levantar una determinada carga. Cuenta con una única rueda, a través de la cual se pasa la soga. Las poleas simples direccionan de la manera más cómoda posible el peso de la carga.

Existen dos tipos de poleas simples:
Las poleas se pueden clasificar de la siguiente manera:
POLEAS SIMPLES: esta clase de poleas se utiliza para levantar una determinada carga. Cuenta con una única rueda, a través de la cual se pasa la soga. Las poleas simples direccionan de la manera más cómoda posible el peso de la carga.

Existen dos tipos de poleas simples:
- POLEAS FIJAS: consiste en un sistema donde la polea se encuentra sujeta a la viga. De esta manera, su propósito consiste en direccionar de forma distinta la fuerza ejercida, permitiendo la adopción de una posición estratégica para tirar de la cuerda. Las poleas fijas no aportan ninguna ventaja mecánica. Es decir, la fuerza aplicada es igual a la que se tendría que haber empleado para elevar el objeto sin la utilización de la polea.

- POLEAS MÓVILES: esta clase de poleas son aquellas que están unidas a la carga y no a la viga, como el caso anterior. Se compone de dos poleas: la primera esta fija al soporte mientras que la segunda se encuentra adherida a la primera a través de una cuerda. Las poleas móviles permiten multiplicar la fuerza ejercida, debido a que el objeto es tolerado por las dos secciones de la soga. De esta manera, la fuerza aplicada se reduce a la mitad. Y la distancia a la que se debe tirar de la cuerda es del doble.

POLEAS COMPUESTAS: el sistema de poleas compuestas se utiliza con el propósito de alcanzar una amplia ventaja de carácter mecánico, levantando objetos de gran peso con un esfuerzo mínimo. Para su ejecución se emplean poleas fijas y móviles. Con la primera se cambia la dirección de la fuerza a realizar. El sistema de poleas móviles más común es el polipasto, cuyas características se detallan a continuación:
- POLIPASTO O APAREJO: en este sistema las poleas están ubicadas en dos conjuntos, en el primero se encuentran las poleas fijas y en el segundo las móviles. El objeto o la carga se acopla al segundo grupo. Los polipastos cuentan con una gran diversidad de tamaños. Aquellos más diminutos son ejecutados a mano, mientras que los de mayor tamaño cuentan con un motor.
Fuente:https://www.tiposde.org/ciencias-exactas/438-tipos-de-poleas/#ixzz5UfGiWrJ5
No hay comentarios.:
Publicar un comentario